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Summary. Determining the statistical properties of nonlinear random systems is a problem of major

interest in many areas of physics and engineering. Even with recent theoretical and computational

advancements, no broadly applicable technique has yet been developed for dealing with the challenging

problems of high dimensionality, low regularity and random frequencies often exhibited by the system.

The Mori-Zwanzig and the effective propagator approaches discussed in this chapter have the potential

of overcoming some of these limitations, in particular the curse of dimensionality and the lack of

regularity. The key idea stems from techniques of irreversible statistical mechanics, and it relies on

developing exact evolution equations and corresponding numerical methods for quantities of interest,

e.g., functionals of the solution to stochastic ordinary and partial differential equations. Such quantities

of interest could be low-dimensional objects in infinite dimensional phase spaces, e.g., the lift of an

airfoil in a turbulent flow, the local displacement of a structure subject to random loads (e.g., ocean
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waves loading on an offshore platform) or the macroscopic properties of materials with random micro-

structure (e.g., modeled atomistically in terms of particles). We develop the goal-oriented framework

in two different, although related, mathematical settings: the first one is based on the Mori-Zwanzig

projection operator method and it yields exact reduced-order equations for the quantity of interest.

The second approach relies on effective propagators, i.e., integrals of exponential operators with respect

to suitable distributions. Both methods can be applied to nonlinear systems of stochastic ordinary

and partial differential equations subject to random forcing terms, random boundary conditions or

random initial conditions.

Introduction

Experiments on high-dimensional random systems provide observations of macroscopic

phase variables such as the mass density in Newtonian fluids, the stress-strain relation

in heterogeneous random materials (e.g., carbon-fiber) or the velocity distribution in

granular flows. These quantities can be related to a thorough microscopic description

of the system by taking averages of real valued (measurable) functions defined on a

very high-dimensional phase space . To understand the dynamics of such phase space

functions one often wishes to obtain closed equations of motion by eliminating the

rest of the degrees of freedom. One of the most typical examples for such contraction

of state variables is the derivation of the Boltzmann equation from the Newton’s law

or from the Liouville equation [143; 119; 16]. Another example of a different type is

the Brownian motion of a particle in a liquid, where the master equation governing

the position and momentum of the particle is derived from first principles (Hamilton

equations of motion of the full system), by eliminating the degrees of freedom of the

liquid [68; 17]. In stochastic systems far from equilibrium, one often has to deal with

the problem of eliminating macroscopic phase variables, i.e., phase variables with the

same order of magnitude and dynamical properties as the ones of interest. For example,

to define the turbulent viscosity in the inertial range of fully developed turbulence, one
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has to eliminate short wavelength components of the fluid velocity which are far from

equilibrium. This problem arises more often than one would expect, and it is more

challenging than the problem of contracting microscopic phase variables. For example,

it arises when deriving the master equation for the series expansion of the solution to

a nonlinear stochastic partial differential equation (SPDE), given any discretized form.

In this chapter we illustrate how to perform the contraction of state variables

in non-equilibrium stochastic dynamical systems by using the Mori-Zwanzig projec-

tion operator method and the effective propagator approach. In particular, we will

show how to develop computable evolution equations for quantities of interest in high-

dimensional stochastic systems and how to determine their statistical properties. This

problem received considerable attention in recent years. Well-known approaches to

compute such properties are generalized polynomial chaos (gPC) [51; 155; 156], multi-

element generalized polynomial chaos (ME-gPC) [147; 139], multi-element and sparse

adaptive probabilistic collocation (ME-PCM) [44; 45; 85; 33], high-dimensional model

representations [113; 77], stochastic biorthogonal expansions [132; 138; 133] and gen-

eralized spectral decompositions [101; 102]. These techniques can provide considerable

speed-up in computational time when compared to classical approaches such as Monte

Carlo (MC) or quasi-Monte Carlo methods. However, there are still several important

computational limitations that have not yet been overcome. They are related to:

1. High-Dimensionality: Many problems of interest to physics and engineering can be

modeled mathematically in terms of systems of nonlinear ODEs or nonlinear PDEs

subject to random initial conditions, random parameters, random forcing terms

or random boundary conditions. The large number of phase variables involved in

these problems plus the high-dimensionality of the random input vectors poses ma-

jor computational challenges in representing the stochastic solution , e.g., in terms of

polynomial chaos or probabilistic collocation. In fact, the number of terms in poly-
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nomial chaos series expansions or the number of collocation points in probabilistic

collocation methods, grows exponentially fast with the number of dimensions (in

tensor product discretizations).

2. Low Stochastic Regularity: The computational cost of resolving solutions with low

stochastic regularity is also an issue. Parametric discontinuities can create Gibbs-

type phenomena which can completely destroy the convergence numerical methods

- just like in spectral methods [58; 103]. Parametric discontinuities are unavoidable

in nonlinear systems and they are often associated with interesting physics, e.g.,

around bifurcation points [139; 140]. By using adaptive methods, e.g., ME-gPC or

ME-PCM, one can effectively resolve such discontinuities and restore convergence.

This is where “h-refinement” in parameter space is particularly important [145; 44].

3. Multiple Scales: stochastic systems can involve multiple scales in space, time and

phase space (see Fig. 1) which could be difficult to resolve by conventional numerical

methods.

4. Long-Term Integration: The flow map defined by systems of differential equations

can yield large deformations, stretching and folding of the phase space. As a con-

sequence, methods that represent the parametric dependence of the solution on

random input variables, e.g., in terms of polynomials chaos of fixed order or in

terms of a fixed number of collocation points, will lose accuracy as time increases.

This phenomenon can be mitigated, although not completely overcome, by using

multi-element methods [146; 44], time-evolving bases [118], or a composition of

short-term flow maps [81].

The Mori-Zwanzig and the effective propagator approaches have the potential of over-

coming some of these limitations, in particular the curse of dimensionality and the lack

of regularity.
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Overcoming High Dimensions

The Mori-Zwanzig and the effective propagator approaches allow us for a systematic

elimination of the “irrelevant” degrees of freedom of the system, and they yield for-

mally exact equations for quantities of interest, e.g., functionals of the solution to

high-dimensional systems of stochastic ordinary differential equations (SODEs) and

stochastic partial differential equations (SPDEs). This allows us to avoid integrating

the full (high-dimensional) stochastic dynamical system and solve directly for the quan-

tities of interest. In principle, this can break the curse of dimensionality in numerical

simulations of SODEs and SPDEs at the price of solving complex integro-differential

PDEs - the Mori-Zwanzig equations. The computability of such PDEs relies on ap-

proximations. Over the years many methods have been proposed for this scope. For

example, small correlation expansions [122; 31; 47], cumulant resummation methods

[137; 46; 17; 13; 79], functional derivative techniques [141; 54; 53; 52], path integral

methods [154; 131; 87; 109], decoupling approximations [55] and local linearization

methods [36]. However, these techniques are not, in general, effective in eliminating

degrees of freedom with the same order of magnitude and dynamical properties as the

quantities of interest. Several attempts have been made to overcome these limitations

and establish a computable framework for Mori-Zwanzig equations that goes beyond

closures based on perturbation analysis. We will discuss some of these methods later

in this chapter.

Overcoming Low Regularity

The PDF of low-dimensional quantities of interest depending on many phase vari-

ables is usually a regular function. This is due to a homogenization effect induced by

multi-dimensional integration. In other words, the PDF of low-dimensional quantities

of interest is often not just low-dimensional but also smooth, i.e., amenable to compu-



6

tation. As an example, consider the joint PDF of the Fourier coefficients of a turbulent

flow. It is known that such joint PDF lies on an attractor with a possibly fractal struc-

ture [43; 50; 42]. However, the linear combination of the Fourier modes, i.e. the Fourier

representation of the velocity field at a specific space-time location, turns out to be ap-

proximately Gaussian. This behavior is exhibited by other chaotic dynamical systems

such as the Lorentz-96 system [80] evolving from a random initial state. In this case,

it can be shown that the joint PDF of the phase variables approaches asymptotically

in time a fractal attractor whose dimension depends on the amplitude of the forcing

term (see, e.g., [70]). However, the marginal distributions of such complex joint PDF

are approximately Gaussian (see Fig. 4).

Formulation

Let us consider the nonlinear dynamical system





dx(t;ω)

dt
= f(x(t;ω), ξ(ω), t)

x(0;ω) = x0(ω)

, (1)

where x(t;ω) ∈ R
n is a multi-dimensional stochastic process, f : Rn+m+1 → R

n is a

deterministic nonlinear map assumed to be Lipschitz continuous in x, ξ(ω) ∈ R
m is a

random vector modeling input uncertainty, and x0(ω) ∈ R
n is a random initial state.

The system (1) can be very large as it can arise, e.g., from a discretization of a nonlinear

SPDE. We assume that the solution to (1) exists and is it is unique for each realization

of ξ(ω) and x0(ω). This allows us to consider x(t;ω) as a deterministic function of ξ(ω)

and x0(ω), i.e., we can define the parametrized flow map x̂(t; ξ(ω), x0(ω)). The joint

PDF of x(t;ω) and ξ(ω) can be represented as

p(a, b, t) = 〈δ(a− x̂(t; ξ; x0))δ(b− ξ)〉 , a ∈ R
n, b ∈ R

m, (2)
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where 〈·〉 denotes an integral with respect to the joint probability distribution of ξ(ω)

and x0(ω), while δ are multi-dimensional Dirac delta functions [72; 69]. Also, the vec-

tors a and b represent the phase space coordinates corresponding to xi(t;ω) and ξ(ω)

respectively. By differentiating (2) with respect to time and using well-known identities

involving the Dirac delta function it is straightforward to obtain the following exact

hyperbolic conservation law

∂p(a, b, t)

∂t
= L(a, b, t)p(a, b, t), L(a, b, t) = −

n∑

i=1

(
∂fi(a, b, t)

∂ai
+ fi

∂

∂ai

)
. (3)

In the sequel we will often set p(t) ≡ p(a, b, t) and L(t) ≡ L(a, b, t) for notational

convenience. Equation (3) is equivalent to the Liouville equation of classical statisti-

cal mechanics (for non-Hamiltonian systems), with the remarkable difference that the

phase variables we consider here can be rather general coordinates - not simply positions

and momenta of particles. For instance, they could be the Galerkin or the collocation

coefficients arising from a spatial discretization of a SPDE, e.g., if we represent the

solution as

u(X, t;ω) =
n∑

j=1

xj(t;ω)φj(X), (4)

where φj(X) are spatial basis functions. Early formulations in this direction were pro-

posed by Edwards [34], Herring [57] and Montgomery [91] in the context of fluid tur-

bulence .

Some Properties of the Solution to the Joint PDF Equation

Nonlinear systems in the form (1) can lead to all sorts of dynamics, including bi-

furcations, fractal attractors, multiple stable steady states and transition scenarios.

Consequently, the solution to the joint PDF equation (3) can be very complex as well,

since it relates directly to the geometry of the phase space. For example, it is known

that the time-asymptotic joint PDF associated with the Lorentz three-mode problem

lies on a fractal attractor with Hausdorff dimension of about 2.06 (see [144]). Chaotic
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states and existence of strange attractors has been well documented for many other

systems, such as the Lorenz-84 see [14] and the Lorenz-96 [70] models. Even in the

much simpler case of the Duffing equation

dx1
dt

= x2,
dx2
dt

= −x1 − 5x31 −
x2
50

+ 8 cos

(
t

2

)
(5)

we can have attractors with fractal structure and chaotic phase similarities [11]. This is

clearly illustrated in Fig. 1 where we plot the Poincaré sections of the two-dimensional

phase space at different times. Such sections are obtained by sampling 106 initial states

from a zero-mean jointly Gaussian distribution, and then evolving them by using (5).

Since the joint PDF of the phase variables is, in general, a high-dimensional compactly

supported distribution with a possibly fractal structure, its numerical approximation

is a very challenging task, especially in long time integration.

However, the statistical description of the system (1) in terms of the joint PDF

equation (3) is often far beyond practical needs. For instance, we may be interested

only in the PDF of only one component, e.g. x1(t;ω), or in the PDF of a phase space

function u = g(x) such as (4). These PDFs can be obtained either by integrating

out several phase variables from the solution to Eq. (3), by constructing NARMAX

models (see [7] §5.7) or by applying the projection operator or the effective propagator

approaches discussed in this chapter. This may yield a low-dimensional PDF equation

whose solution is more regular than the one obtained by solving directly Eq. (3), and

therefore more amenable to computation. The regularization of the reduced-order PDF

is due to multi-dimensional integration (marginalization) of the joint PDF.

Dimension Reduction: BBGKY Hierarchies

A family of reduced-order probability density functions can be obtained by integrating

the solution to Eq. (3) with respect to the phase space coordinates which are not of
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Fig. 1. Duffing equation. Poincaré sections of the phase space at different times obtained by evolving

a zero-mean jointly Gaussian distribution with covariance C11 = C22 = 1/4, C12 = 0. Note that

simple statistical properties such as the mean and variance are not sufficient to describe the stochastic

dynamics of the system (5). (Adapted from [137]).

interest. This yields, for example,

pi(ai, t) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

p(a, b, t)da1 · · · dai−1dai+1 · · · dandb, i = 1, .., n. (6)

These reduced-order densities differ from those used in classical BBGKY theory [16],

mainly in that they are not, in general, symmetric under interchanges of different

phase space coordinates. For instance, pi(ai, t) is not the same function of ai that

pj(aj, t) is of aj, if i and j are different. In the classical BBGKY framework the phase

coordinates of the systems are positions and momenta of identical particles. Therefore,

the reduced-order multi-point densities are invariant under interchanges of phase space

coordinates of the same type, e.g., positions or momenta. Most of the added complexity

to the classical BBGKY theory stems from this lack of symmetry. A related approach,
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due to Lundgren [82] and Monin [90], yields a hierarchy of PDF equations involving

suitable limits of reduced density functions (see also [135; 136; 60; 49; 153]). The

effective computability of both BBGKY-type and Lundgren-Monin hierarchies arising

from Eq. (3) relies in appropriate closure schemes, e.g., a truncation based on a suitable

decoupling approximation of the PDF. In particular, the mean-field approximation

p(t, a, b) = pξ(b)
n∏

i=1

pi(ai, t), (7)

where pξ(b) is the joint PDF of the random vector ξ, yields the system of conservation

laws (i = 1, ..., n)

∂pi(ai, t)

∂t
= − ∂

∂ai


pi(ai, t)

∫ ∞

−∞

· · ·
∫ ∞

−∞

fi(a, b, t)pξ(b)
n∏

j=1
j 6=i

pj(aj, t)dajdb


 . (8)

These equations are coupled through the integrals appearing within the square bracket.

As an example, consider the Lorentz-96 system [70]

dxi
dt

= (xi+1 − xi−2) xi−1 − xi + c, i = 1, ..., 40. (9)

The first-order truncation of the BBGKY hierarchy is (i = 1, ..., 40)

∂pi(ai, t)

∂t
= − ∂

∂ai
[(〈xi+1〉 − 〈xi−2〉) 〈xi−1〉 pi(ai, t)− (ai − c)pi(ai, t)] , (10)

where 〈·〉 denotes averaging with respect to the joint PDF of the system, assumed in

the form (7). Higher-order truncations, i.e., truncations involving multi-point PDFs

can be obtained in a similar way (see [22; 91]). Clearly, higher truncation orders yield

better accuracy, but at higher computational cost (see Fig. 2).

The Mori-Zwanzig Projection Operator Framework

The basic idea of the Mori-Zwanzig formalism is to reduce the dimensionality of the

dynamical system (1) by splitting the phase variables into two categories: the relevant
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Fig. 2. Lorenz-96 system: Standard deviation of the phase variables versus time (left) and absolute

errors of first- and second-order truncations of the BBGKY hierarchy relative to MC. (Adapted from

[22])

(or resolved) variables and the irrelevant (or unresolved) ones. These two sets can be

easily classified by means of an orthogonal projection operator P that maps the state

vector onto the set of resolved variables. By applying such orthogonal projection to

Eq. (3) it is straightforward to obtain the following exact equation

∂Pp(t)

∂t
= PL(t)Pp(t) + PL(t)G(t, 0)Qp(0) + PL(t)

∫ t

0

G(t, s)QL(s)Pp(s)ds, (11)

first derived by Nakajima [97], Zwanzig [159; 160] and Mori [92]. Here we have set p(t) ≡

p(a, b, t) and L(t) ≡ L(a, b, t) for notational convenience, and denoted by Q = I − P

the projection onto the unresolved variables. The operator G(t, s) (forward propagator

of the orthogonal dynamics) is formally defined as

G(t, s) =
←−
T exp

[∫ t

s

QL(τ)dτ

]
, (12)

where
←−
T is the chronological time-ordering operator (latest times to the left). For a

detailed derivation see, e.g., [137; 160; 13; 17; 67]. From Eq. (11) we see that the exact

dynamics of the PDF of the relevant phase variables (projected PDF Pp(t)) depends

on three terms: the Markovian term PL(t)Pp(t) - computable based on the current

state Pp(t); the initial condition (or noise) term PL(t)G(t, 0)Qp(0) and the memory
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term (time convolution), both depending on the propagator G(t, 0) of the orthogonal

dynamics. The critical part of the MZ formulation is to find reliable and accurate

approximations of the memory and the initial condition terms.

The nature of the projection operator P will be discussed extensively in subse-

quent sections. For now, it is sufficient to note that such projection basically extracts

from the full joint PDF equation (3) only the part that describes (in an exact way) the

dynamics of the relevant phase variables. A simple analysis of Eq. (11) immediately

shows its irreversibility. Roughly speaking, the projected distribution function Pp(t),

initially in a certain subspace, leaks out of this subspace so that information is lost,

hence the memory (time convolution) and the initial condition terms.

Coarse-Grained Dynamics in the Phase Space

The Mori-Zwanzig projection operator method just described can be also used to reduce

the dimensionality of either deterministic or stochastic systems of equations in the phase

space, yielding generalized Langevin equations [119; 62] for quantities of interest. One

remarkable example of such equations is the one describing the coarse-grained dynamics

of a particle system. Within this framework the phase variables xi(t) in (1) can represent

either the position or the momentum of the particle “i”. Coarse-graining is achieved

by defining a new set of state variables

u(t;ω) = g (x(t;ω), t) (quantities of interest) (13)

where g : Rn+1 → R
q is a a phase space function and q is usually much smaller than

n. These variables can represent the position or the momentum of entire clusters of

particles, e.g, the big green particles shown in Fig. 3. The irrelevant phase variables

in this case are the components of the full state vector x. The generalized Langevin

equation satisfied by (13) can be obtained by using standard methods [119; 95; 30; 62].
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Fig. 3. Coarse graining particle systems using the projection operator method. The microscopic de-

grees of freedom associated with each atom are condensed into a smaller number of degrees of freedom

(those associated with the big green particles). Coarse-graining is not unique, and therefore funda-

mental questions regarding model inadequacy, selection and validation have to be carefully addressed.

For example, if the system is autonomous, i.e., if the right hand side of Eq. (1) reduces

to f(x), then we have the formally exact coarse-grained system (see [93; 62; 158])

dui(t)

dt
= etMPMui(0) +

∫ t

0

e(t−s)MPMRi(s)ds+Ri(t), i = 1, ..., q (14)

where P is an orthogonal projection operator and

M =
n∑

j=1

fj(x0)
∂

∂x0
, Ri(t) = et(I−P )M(I − P )Mui(t). (15)

The state-space reduced order equations (14) are particularly useful if ui(t) is a com-

plete set of slowly varying variables relative to the dynamics of the unresolved variables,

i.e., the dynamics of x(t;ω). In this case, the fluctuating forces Ri(t) are rapidly varying

in time due to their modified propagator exp[t(I−P )M ] and the memory kernel rapidly

decays to zero. Effective approximations are possible in these cases [66; 62; 78; 158].

Based on the phase space formulation, it is also possible to obtain the Mori-Zwanzig

equation for the one-point or the multi-point PDF of the quantities of interest (13). To

this end, it is sufficient to differentiate the distribution function

pu(a, t) = 〈δ(a− u(t;ω))〉 , (16)

with respect to time and substitute (14) within the average (see, e.g., [93; 119] for the

derivation). If (1) represents the semi-discrete form of a SPDEs and we are interested

in the phase space function (4), then the Mori-Zwanzig formulation yields the exact
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PDF equation for the series expansion of the solution to the SPDE. This overcomes

the well-known closure problem arising in PDF equations corresponding to SPDEs

with diffusion or higher-order terms [106; 142; 111]. On the other hand, if ui(t) = xi(t)

(i = 1, ..., q) are the first q components of a Galerkin dynamical system then the Mori-

Zwanzig projection operator method allows us to construct a closure approximation in

which the unresolved dynamics (modes from q + 1 to n) is injected in a formally exact

way into the resolved dynamics. This use of projection operators has been investigated,

e.g., by Chorin [27; 24], Stinis [120] and Chertok [20]. Early studies in this direction -

not involving Mori-Zwanzig - employed inertial manifolds [41] and nonlinear Galerkin

projections [84].

Projection Operators

The coarse graining of the microscopic equations of motion can be performed by intro-

ducing a projection operator and applying it to the master equation (3) (coarse graining

in the PDF space - Eq. (11)) or to the dynamical system (1) (coarse-graining in the

phase space - Eq. (14)). Well-known choices are the Zwanzig projection [160], the Mori

projection, projections defined in terms of Boltzmann-Gibbs measures [119; 62; 129] or

projections defined by conditional expectations [27; 30; 25; 120]. If the relevant and the

irrelevant phase variables (hereafter denoted by a and b, respectively) are statistically

independent, i.e., if p(0) = pa(0)pb(0), then a convenient projection is

Pp(t) = pb(0)

∫
p(t)db ⇒ pa(t) =

∫
Pp(t)db. (17)

This projection takes the joint PDF p(t) and basically sends it to a separated state. In

this case we have that p(0) is in the range of P , i.e., Pp(0) = p(0), and therefore the

initial condition term in the MZ-PDF equation drops out sinceQp(0) = (I−P )p(0) = 0.
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Time-Convolutionless Form of the Mori-Zwanzig Equation

The Mori-Zwanzig PDF (MZ-PDF) equation (11) can be transformed into a Markovian

(time-convolutionless) form. To this end, we simply consider the formal solution to

orthogonal dynamics equation

Qp(t) = G(t, 0)Qp(0) +

∫ t

0

G(t, s)QL(s)Pp(s)ds, (18)

and replace p(s) with the solution to Eq. (3), propagated backward from time t to time

s < t, i.e.

p(s) = Z(t, s)p(t), where Z(t, s) =
−→
T exp

[
−
∫ t

s

L(τ)dτ

]
. (19)

In the latter definition
−→
T is the anti-chronological ordering operator (latest times to

the right). Substituting (19) into (18) yields

Qp(t) = [I −Σ(t)]−1G(t, 0)Qp(0) + [I −Σ(t)]−1Σ(t)Pp(t), (20)

where

Σ(t) =

∫ t

0

G(t, s)QL(s)PZ(t, s)ds. (21)

Equation (20) states that the “irrelevant” part of the PDF Qp(t) can, in principle, be

determined from the knowledge of the “relevant” part Pp(t) at time t, and from the

initial condition Qp(0). Thus, the dependence on the history of the relevant part which

occurs in the classical Mori-Zwanzig equation has been removed by the introduction

of the backward propagator (19). By using the orthogonal dynamics equation (20), we

obtain the Markovian (time-convolutionless) MZ-PDF equation

∂Pp(t)

∂t
= K(t)Pp(t) +H(t)Qp(0), (22)

where

K(t) = PL(t) [I −Σ(t)]−1 , H(t) = PL(t) [I −Σ(t)]−1G(t, 0). (23)
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Many other equivalent forms of the Mori-Zwanzig equation can be constructed (see

the Appendix in [137]), exactly for the same reason as why it is possible to represent

an effective propagator of reduced-order dynamics in terms of generalized operator

cumulants [56; 98; 75; 74]. So far, everything that has been said is exact, and it led us

to the equation of motion (22), which is linear and local in time. Unfortunately, such

equation is still of little practical use, because the exact determination of the operators

K and H is as complicated as the solution of Eq. (3). However, the time-convolutionless

form (22) is a convenient starting point to construct systematic approximation schemes,

e.g., by expandingK andH in terms of cumulant operators relative to suitable coupling

constants [108; 17; 13; 116; 75; 65; 67; 98].

Multi-Level Coarse-Graining in Probability and Phase Spaces

In [137] we recently proposed a multi-level coarse graining technique in which the

evolution equation for the orthogonal PDF dynamics Qp(t)

∂Qp(t)

∂t
= QL(t)[Pp(t) +Qp(t)], (24)

is decomposed further by introducing a new pair of orthogonal projections P1 and Q1

such that P1 +Q1 = I. This yields the coupled system

∂P1Qp(t)

∂t
= P1QL(t) [Pp(t) + P1Qp(t) +Q1Qp(t)] , (25)

∂Q1Qp(t)

∂t
= Q1QL(t) [Pp(t) + P1Qp(t) +Q1Qp(t)] . (26)

Proceeding similarly, we can split the equation for Q1Qp(t) by using a new pair of

orthogonal projections P2 and Q2 satisfying P2 + Q2 = I. This yields two additional

evolution equations for P2Q1Qp(t) and Q2Q1Qp(t), respectively. Obviously, one can

repeat this process indefinitely to obtain a hierarchy of equations which generalizes

both the Mori-Zwanzig as well as the BBGKY frameworks. The advantage of this

formulation with respect to the classical approach relies on the fact that the joint PDF
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p(t) is not simply split into the “relevant” and the “irrelevant” parts by using P and

Q. Indeed, the dynamics of the irrelevant part Qp(t) is decomposed further in terms of

a new set of projections.

This allows us to coarse-grain relevant features of the orthogonal dynamics fur-

ther in terms of lower-dimensional quantities. In other words, the multi-level projection

operator method allows us to seemingly interface dynamical systems at different scales

in a mathematically rigorous way. This is particularly useful when coarse graining (in

state space) high-dimensional systems in the form (1). To this end, we simply have to

define a set of quantities of interest u(1) = g(1)(x, t), u(2) = g(2)(x, t), etc. (see (13)),

e.g., representing clusters of particles of different sizes, and corresponding projection

operators P1, P2, etc. This yields a coupled set of equations resembling (14) in which

relevant features of the microscopic dynamics are interacting at different scales defined

by different projection operators.

The Closure Problem

Most schemes that attempt to compute the solution of MZ equations or BBGKY-type

hierarchies rely on the identification of some small quantity that serves as the basis for

a perturbation expansion, e.g., the density for Boltzmann equations [16], the coupling

constant or correlation time for Fokker-Planck-type equations [122; 31; 47; 94] or the

Kraichnan absolute equilibrium distribution for turbulent inviscid flows [91; 73]. One

of the most stubborn impediments for the development of a general theory of reduced-

order PDF equations has been the lack of such readily identifiable small parameters.

Most of the work that has been done so far refers to the situation in which such small

parameters exist, e.g., when the operator L in Eq. (3) can be decomposed as

L = L0 + σL1. (27)
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Here L0 depends only on the relevant variables of the system, σ is a positive real number

(coupling constant in time-dependent quantum perturbation theory) and the norm

σ ‖L1‖ is somehow small (see, e.g., [13; 94; 17]). By using the interaction representation

of quantum mechanics [150; 9], then it is quite straightforward to obtain from (22)

and (27) an effective approximation (see [137]). One way to do so is to expand the

operators (23) in a cumulant series, e.g., in terms of Kubo-Van Kampen operator

cumulants [56; 75; 65; 98], involving increasing powers of σ (coupling parameter). Any

finite-order truncation of such series then represents an approximation to the exact

MZ-PDF equation. In particular, the approximation obtained by retaining only the

first two cumulants is known as Born approximation in quantum field theory [17]. We

remark that from the point of view of perturbation theory, the convolutionless form

(22) has distinctive advantages over the usual convolution form (11). In particular, in

the latter case a certain amount of rearrangement is necessary to obtain an expression

which is correct up to a certain order in the coupling parameter [127].

Beyond Perturbation

Several attempts have been made to approximate MZ equations beyond closures based

on perturbation analysis. For example, Chorin [27; 25; 24], Stinis [121; 120] and Cher-

tok [20] proposed various models - such the t-model or the modified t model - for

dimension reduction of autonomous dynamical systems in situations where there is no

clear separation of scales between the resolved and the unresolved dynamics.

Another widely used closure approximation is based on the assumption that

the distribution of the quantity of interest has a specific form, e.g., approximately

Gaussian. This assumption can be justified in some cases on the basis of mixing, high-

dimensionality and chaos. For example, the marginal densities of the Lorenz-96 system

(9) are approximately Gaussian (see figure 4). In these cases, a Gaussian closure can be
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Fig. 4. Lorenz-96 system. Joint PDFs of different phase variables at time t = 100. Setting c = 20

in (9) yields a chaotic dynamics. In this case it can be shown that the joint PDF that solves Eq. (3)

goes to a fractal attractor with Hausdorff dimension 34.5 [70]. However, the reduced-order PDFs are

approximately Gaussian. This can be justified on the basis of chaos and multi-dimensional integration

(6).

used to represent the PDF of the quantity of interest. Alternative methods rely, e.g, on

maximum entropy closures [129; 61; 100; 63], and functional renormalization [121; 5],

and renormalized perturbation series ([88], Ch. 5). The key idea is to use methods of

many body-theory to generalize traditional perturbation series to the case of strong

interactions [86]. These approaches have been used extensively in turbulence theory

[88; 50].

A different technique to compute memory and the initial condition terms ap-

pearing in the Mori-Zwanzig equation relies on sampling, e.g., few realizations of the

full dynamical system (1). In particular, one can leverage on implicit sampling tech-

niques [26] and PDF estimates to construct a hybrid approach in which the memory

and the initial condition terms in the MZ equation are computed on-the-fly based on

both samples with an approximate MZ equation. In this way, one can compensate for

the loss of accuracy associated with the approximation of the MZ equation with few

samples of the full dynamical system. A closely related approach is to estimate the ex-

pansion coefficients of the effective propagator (subsequent section) by using samples
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of the full dynamical system (1), and retain only the coefficients larger than a certain

threshold.

Effective Propagators

Let us consider a dynamical system in the form (1) with time-independent f , i.e., an

autonomous system. The formal solution to the joint PDF equation (3) in this case

can be expressed as

p(t) = etLp(0). (28)

If the initial state p(0) is separable, i.e., if p(0) = pa(0)pb(0) (where a and b are

the relevant and irrelevant phase space coordinates), then the exact evolution of the

relevant part of the PDF is given by

pa(t) =
〈
etL
〉
pa(0), (29)

where 〈·〉 is an average with respect to the PDF pb(0). For example, the exact evolution

of the PDF of the first component of the Lorentz-96 system (9) is given by

p1(a1, t) =

(∫ ∞

−∞

· · ·
∫ ∞

−∞

etLp2(a2, 0) · · · pn(an, 0)da2 · · · dan
)
p1(a1, 0), (30)

where L, in this case, is

L = −nI −
n∑

i=1

[(ai+1 − ai−2) ai−1 + ai + c]
∂

∂ai
. (31)

The linear operator
〈
etL
〉
appearing in (29) is known as relaxation operator [75] or ef-

fective propagator [64; 88] of the reduced-order dynamics. Such propagator is no longer

a semigroup as
〈
e(t+s)L

〉
6=
〈
etL
〉 〈
esL
〉
, i.e., the evolution of pa(t) is non-Markovian.

This reflects the memory effect induced in the reduced-order dynamics when we inte-

grate out the phase variables b. To compute the effective propagator we need to resort

to approximations. For example, we could expand it in a power series [71; 35] as
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〈
etL
〉
= I +

∞∑

k=1

tk

k!

〈
Lk
〉
. (32)

This expression shows that the dynamics of pa(t) is fully determined by the moments

of the operator L relative to the joint distribution of the irrelevant phase variables.

In particular, the kth-order moment
〈
Lk
〉
governing the dynamics of p1(a1, t) in the

Lorenz-96 system (30) is a linear differential operator in a1 involving derivatives up to

order k, i.e.,

〈
Lk
〉
=

∫ ∞

−∞

· · ·
∫ ∞

−∞

L · · ·L︸ ︷︷ ︸
k times

p2(a2, 0) · · · pn(an, 0)da2 · · · dan (33)

=
k∑

j=0

α
(k)
j (a1)

∂j

∂aj1
. (34)

The coefficients α
(k)
j can be calculated by substituting (31) into (33) and performing

all integrations. This is a cumbersome calculation, but in principle it can be carried

on and yields exact results. The problem is that truncating moment expansions such

as (32) to any finite order usually yields results of poor accuracy. This is because we

may be discarding secular terms growing like tk, if the norm of
〈
Lk
〉
does not decay

rapidly enough. A classical approach to overcome these limitation is to use operator

cumulants [56; 75; 74; 65; 67]. For autonomous dynamical systems, we have the exact

formula (see, e.g., [4])

〈
etL
〉
= e〈etL−I〉

c , (35)

where 〈·〉c here denotes a cumulant average, e.g.,

〈L〉c = 〈L〉 ,
〈
L2
〉
c
=
〈
L2
〉
− 〈L〉2 , · · · . (36)

Following Kubo [75; 74], we emphasize that many different types of operator cumu-

lants can be defined. Disregarding for, the moment, the specific prescription we use to

construct such operator cumulants (see [75; 56]), let us differentiate (29) with respect

to time and take (35) into account. This yields the following exact reduced-order PDF

equation



22

∂pa(t)

∂t
=

(
〈L〉c +

∞∑

k=2

tk−1

(k − 1)!

〈
Lk
〉
c

)
pa(t), (37)

which is completely equivalent to the MZ-PDF equation (22). Any truncation of the

series expansion in (37) yields an approximated equation whose specific form depends

on the way we define the cumulant average 〈·〉c. For example, we can get expansions

in terms of Kubo-Van Kampen, Waldenfels or Speicher operator cumulants (see the

Appendix of [137] or [56; 98]). The choice of the most appropriate operator cumulant

expansion is problem-dependent.

Other methods to compute approximations to the effective propagator
〈
etL
〉

rely on functional renormalization, in particular on renormalized perturbation series

([88], Ch. 5). The key idea of these approaches is to use methods of many body-theory

to generalize traditional perturbation series to the case of strong interactions. Formal

treatment of this subject, along with the introduction of diagrammatic representations

can be found in [88; 5]. If pa(t) involves q phase variables (a1, ..., aq) then each
〈
Lk
〉
c

is a linear operator of order k involving a linear combination of generators ∂j/∂ajk in

the form

〈
Lk
〉
c
=

k∑

i1,...,iq=0

β
(k)
i1···iq

(a1, ..., aq)
∂i1+···+iq

∂ai11 · · · ∂a
iq
q

. (38)

A substitution of this series expansion into Eq. (37) immediately suggests that the

exact evolution of the reduced order PDF pa(t) is governed, in general, by a linear PDE

involving derivatives of infinite-order in the phase variables (a1, ..., aq). All coefficients

β
(k)
i1···iq

(a1, ..., aq) appearing in (38) can be expressed in terms of integrals of polynomial

functions of fi (see equation (1)). However, computing such coefficients at all orders is

not trivial nor practical. On the other hand, determining an approximated advection-

diffusion form of (37) is possible, simply by taking into account those coefficients leading

to second-order derivatives in the phase variables. This can be achieved in a systematic

way by truncating the series (38) to derivatives of second-order and computing the

corresponding coefficients.
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Operator Splitting and Series Expansions

Let us consider an autonomous dynamical system evolving from a random initial state.

The propagator U(t, t0) = e(t−t0)L forms a semigroup and therefore it can be split as

U(tn, t0) = U(tn, tn−1) · · ·U(t2, t1)U(t1, t0). (39)

Each operator U(ti, ti−1) (short-time propagator) can be then approximated according

to an appropriate decomposition formula [123; 124; 151; 10]. In particular, if L is

given by (3) and if ∆t = |ti − ti−1| is small, then one can use the following first-order

approximation

exp

[
−∆t

(
n∑

i=1

∂fi
∂ai

+ fi
∂

∂ai

)]
≃ exp

[
−∆t

n∑

i=1

∂fi
∂ai

]
n∏

k=1

exp

[
−∆tfk

∂

∂ak

]
. (40)

This allows us to split the joint PDF equation (3) into a system of PDF equations. This

approach is quite standard in numerical methods to solve linear PDEs in which the

generator of the semigroup can be represented as a superimposition of linear operators.

The error estimate for the decomposition formula (40) is given in [123; 125]. Higher-

order formulas such as Lie-Trotter, Suzuki, and related Backer-Campbell-Hausdorff

formulas can be constructed as well. The literature on this subject is very rich, e.g.

[9; 15; 128; 149; 152; 123].

A somewhat related approach relies on approximating the exponential semi-

group etL in terms of operator polynomials, e.g., the Faber polynomials Fk [104]. In

this case, the exact evolution of the PDF can be expressed as

pa(t) =
N∑

k=0

ψk(t)Φk(a), where Φk(a) = 〈Fk(L)〉 pa(0). (41)

In particular, if Fk are generated by elliptic conformal mappings then they satisfy a

three-term recurrence in the form

Fk+1(L) = (L− c0)Fk(L)− c1Fk−1(L), F0(L) = I, (42)
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which yields an unclosed three-term recurrence for the modes Φk

Φk+1(a) = 〈LFk(L)〉 pa(0)− c0Φk(a)− c1Φk−1(a), Φ0(a) = 1. (43)

In some cases, the operator averages 〈Ln〉 appearing in 〈LFk(L)〉 can be reduced to

one-dimensional integrals. This happens, in particular, if the initial p(0) is separable,

and if the functions fk appearing in (1) are separable as well. Although this might seem

a severe restriction, it is actually satisfied by many systems including Lorentz-96 [80],

Kraichnan-Orszag [107], and the semi-discrete form of SPDEs with polynomial-type

nonlinearities (e.g., viscous Burgers and Navier-Stokes equations).

Algorithms and Solvers

MZ-PDF equations are a particular class of probability density function equations

involving memory and initial condition terms. Computing the numerical solution to a

probability density function equation is, in general, a very challenging task that involves

several problems of different nature. In particular,

High-Dimensionality: PDF equations describing realistic physical systems usually in-

volve many phase variables. For example, the Fokker-Planck equation of classical sta-

tistical mechanics yields a joint probability density function in n phase variables, where

n is the dimension of the underlying dynamical system, plus time.

Multiple Scales: PDF equations may involve multiple scales in space and time, which

could be hardly accessible by conventional numerical methods. For example, the joint

PDF equation (3) is a hyperbolic conservation law whose solution is purely advected

(with no diffusion) by the compressible flow G. This can easily yield mixing, fractal

attractors, and all sorts of complex dynamics (see Fig. 1).

Lack of Regularity: The solution to a PDF equation is, in general, a distribution [69].

For example, it could be a multivariate Dirac delta function, a function with shock-type
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discontinuities [23], or even a fractal object. From a numerical viewpoint, resolving such

distributions is not trivial although in some cases it can be done by taking integral

transformations or projections [157]. An additional numerical difficulty inherent to

the simulation of PDF equations arises due to the fact that the solution could be

compactly supported over disjoint domains. This obviously requires the development

of appropriate numerical techniques such as adaptive discontinuous Galerkin methods

[21; 28; 114].

Conservation Properties: There are several properties of the solution to a PDF equation

that must be preserved in time. The most obvious one is mass, i.e., the solution always

integrates to one. Another property that must be preserved is the positivity of the joint

PDF, and the fact that a partial marginalization of a joint PDF still yields a PDF.

Long-Term Integration: The flow map defined by nonlinear dynamical systems can

yield large deformations, stretching and folding of the phase space. As a consequence,

numerical schemes for kinetic equations associated with such systems will generally

loose accuracy in time.

Over the years, many different methods have been proposed to address these issues,

with the most efficient ones being problem-dependent. For example, a widely used

method in statistical fluid mechanics is the particle/mesh method [111; 112; 110; 96],

which is based directly on stochastic Lagrangian models. Other methods make use

of stochastic fields [130] or direct quadrature of moments [48]. In the case of Boltz-

mann equation, there is a very rich literature. Both probabilistic approaches such as

direct simulation Monte Carlo [8; 117], as well as deterministic methods, e.g., discon-

tinuous Galerkin and spectral methods [40; 18; 19], have been proposed to compute

the solution. Probabilistic methods such as direct simulation Monte Carlo are exten-

sively used because of their very low computational cost compared to finite-volumes,

finite-differences or spectral methods, especially in the multi-dimensional case. How-
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Fig. 5. Range of applicability of numerical methods for solving PDF equations as a function of the

number of phase variables n and the number parameters m appearing in the equation. Shown are:

Separated series expansion methods (SSE), BBGKY closures, high-dimensional model representations

(ANOVA), adaptive discontinuous Galerkin methods (DG) combined with sparse grids (SG) or tensor

product probabilistic collocation (PCM), direct simulation Monte Carlo (DSMC).

ever, Monte Carlo usually yields poorly accurate and fluctuating solutions, which need

to be post-processed appropriately, for example through variance reduction techniques.

We refer to Dimarco and Pareschi [32] for a recent review.

In our previous work [21], we addressed the lack of regularity and high-

dimensionality (in the space of parameters) of kinetic equations by using adaptive

discontinuous Galerkin methods [29; 115] combined with sparse probabilistic colloca-

tion. Specifically, the phase variables of the system were discretized by using spectral

elements on an adaptive non-conforming grid that tracks the support of the PDF in

time, while the parametric dependence of the solution was handled by using sparse

grids. More recently, we proposed and validated new classes of algorithms address-

ing the high-dimensional challenge in PDF equations [22]. These algorithms rely on

separated series expansions, high dimensional model representations and BBGKY hi-

erarchies. Their range of applicability is sketched in Fig. 5 as a function of the number

of phase variables n and the number of parameters m appearing in the PDF equation

(see also Eq. (1)).
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The numerical treatment of MZ-PDF equations is even more challenging than

classical PDF equations, due to the complexity of the memory and the initial condition

terms. Such terms involve the projected part of the full orthogonal dynamics, which is

represented by an exponential operator of very high dimension. Computing the solution

to MZ-PDF equations, therefore, heavily relies on the approximation of memory and

initial condition terms, e.g., in terms of operator cumulants [137; 23], approximate

exponential matrices [2; 3; 89] or samples of the full dynamical system [24]. Developing

new algorithms to compute the solution to MZ-PDF equations is a matter for future

research.

Applications

In this section we illustrate the application of the the Mori-Zwanzig formulation to

some well-know stochastic systems.

Stochastic Resonance Driven by Colored Noise

Let us consider a nonlinear dynamical system subject to a weak deterministic periodic

signal and additive colored random noise. As is well known, in some cases, e.g., in

bistable systems, the cooperation between noise and signal can yield a phenomenon

known as stochastic resonance [6; 83; 148; 105], namely random noise can enhance

significantly the transmission of the weak periodic signal. The mechanism that makes

this possible is explained in Fig. 6, with reference to the system





dx(t)

dt
=

2µx− 2νx3 − νx5
2(1 + x2)2

+ σf(t; ξ) + ǫ cos(Ωt)

x(0) = x0(ω)

. (44)

Here ξ ∈ R
m is a vector of uncorrelated Gaussian random variables while x0 ∈ R is

a Gaussian initial state. Also, the random noise f(t; ξ) is assumed to be a zero-mean
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Fig. 6. Stochastic resonance. We study the system (44) with parameters µ = 10, ν = 3, Ω = 2,

ǫ = 0.2 subject to weakly colored random noise (τ = 0.01) of different amplitudes: (a) σ = 0; (b)

σ = 0.2; (c) σ = 0.4; (d) σ = 0.8. Each figure shows only one solution sample. At low noise levels

the average residence time in the two states is much longer than the driving period. However, if we

increase the noise level to σ = 0.8 (Fig. (d)), then we observe almost periodic transitions between the

two meta-stable states. In most cases, we have a jump from one state to the other and back again

approximately once per modulation period. (Adapted from [137]).

Gaussian process with exponential covariance function

C(t, s) =
1

2τ
e−|t−s|/τ (45)

and finite correlation time τ .

Mori-Zwanzig Equation

The exact evolution equation for the PDF of x(t) can be obtained by applying the con-

volutionless projection operator method described in previous sections. Such equation

is a linear partial differential equation of infinite-order in the phase variable a. If we

consider a second-order approximation, i.e., if we expand propagator of px in terms of

cumulant operators and truncate the expansion at the second order, then we obtain

∂px
∂t

= L0px − ǫ cos(Ωt)
∂px
∂a

+ σ2

[∫ t

0

C(t, s)
∂

∂a
e(t−s)L0

∂

∂a
e(s−t)L0ds

]
px, (46)

where

L0 =
∂

∂a

(
2µa− 2νa3 − νa5

2(1 + a2)2

)
I +

(
2µa− 2νa3 − νa5

2(1 + a2)2

)
∂

∂a
. (47)
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(a) (b)

Fig. 7. Stochastic resonance. Range of validity of the MZ-PDF equation (46) as a function of the

noise amplitude σ and correlation time τ (Fig. (a)). Effective diffusion coefficient D(a, t) (see Eq. (48))

corresponding to exponentially correlated Gaussian noises (Fig. (b)). (Adapted from [137]).

The rationale behind this approximation is that higher-order cumulants can be ne-

glected [37; 38]. This happens, in particular, if both ǫ and σ are small. Faetti et. al.

[37; 38] have shown that for ǫ = 0 the correction due to the fourth-order cumulants

are of order στ 2 for Gaussian noise and order στ for other noises. Thus, (46) holds

true either for small ǫ and σ and arbitrary correlation time τ or for small ǫ and τ and

arbitrary noise amplitude σ (see Fig. 7). It can be shown (see, e.g., [137; 94]) that (46)

is equivalent to the following advection-diffusion equation

∂px
∂t

= L0px − ε cos(Ωt)
∂px
∂a

+ σ2 ∂
2

∂a2
(D(a, t)px) , (48)

where the effective diffusion coefficient D(a, t) depends on the type of noise. Note that

if the correlation time τ goes to zero (white-noise limit), then Eq. (46), with C(t, s)

defined in (45), consistently reduces to the classical Fokker-Planck equation. The proof

is simple, and it relies on the limits

lim
τ→0

∫ t

0

1

2τ
e−s/τds =

1

2
, lim

τ→0

∫ t

0

1

2τ
e−s/τskds = 0, k ∈ N. (49)

These equations allow us to conclude that

lim
τ→0

∫ t

0

1

2τ
e−s/τ ∂

∂a
esL0

∂

∂a
e−sL0ds = lim

τ→0

[∫ t

0

1

2τ
e−s/τds

]
∂2

∂a2
=

1

2

∂2

∂a2
, (50)
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(a) (b) (c)

Fig. 8. Stochastic resonance. Time snapshots of the PDF of x(t) as predicted by Eq. (46) (continuous

lines) and MC simulation (105 samples) (dashed lines). The Gaussian process f(t; ξ) in (44) is expo-

nentially with small correlation time τ (Fig. (a) and (b)). Note that the Karhunen-Loève expansion

of such noise requires 280 Gaussian random variables to achieve 99% of the correlation energy in the

time interval [0, 3]. We also show the PDF dynamics corresponding to fractional Brownian motion of

small amplitude and different Hurst indices (Fig. (c)). (Adapted from [137]).

i.e., for τ → 0 Eq. (46) reduces to the Fokker-Planck equation

∂px
∂t

= L0px − ǫ cos(Ωt)
∂px
∂a

+
σ2

2

∂2px
∂a2

. (51)

Next, we study the transient dynamics of the one-time PDF of the solution x(t)

within the period T = 3. To this end, we consider the following set of parameters

µ = 1, ν = 1, Ω = 10, ǫ = 0.5, leading to a slow relaxation to statistical equilibrium.

This allows us to study the transient of the PDF more carefully, and compare the

results with Monte Carlo (MC). This is done in Fig. 8, where it is seen that for small

σ the random forcing term in (44) does not influence significantly the dynamics and

therefore the PDF of x(t) is mainly advected by the operator L0. Note that the PDF

tends to accumulate around the meta-stable equilibrium states ±
√√

3− 1. For larger

σ the probability of switching between the meta-stable states increases and therefore

the strong bi-modality observed in Fig. 8 (left) is attenuated.
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Fractional Brownian Motion, Levy, and Other Noises

There exist a close connection between the statistical properties of the random noise

and the structure of the MZ-PDF equation for the response variables of the system.

In particular, it has been recently shown, e.g. in [76], that the PDF of the solution

to the Langevin equation driven by Levy flights satisfies a fractional Fokker-Plank

equation. Such equation can be easily derived by using the Mori-Zwanzig projection

operator framework, which represents therefore a very general tool to exploit the rela-

tion between noise and reduced-order PDF equations. For example, let us consider the

non-stationary covariance function of fractional Brownian motion

C(t, s) =
1

2

(
|t|2h + |s|2h − |t− s|2h

)
, 0 < h < 1, t, s > 0 (52)

which reduces to the covariance function of standard Levy noise for h = 1/2, i.e.,

CLevy(t, s) = min{t, s}. A substitution of (52) into (46) yields an equation for the PDF

of the solution to the system (1) driven by fractional Brownian motion of small ampli-

tude. As is well known, such noise can trigger either sub-diffusion or super-diffusion in

the PDF dynamics.

Stochastic Advection-Reaction

Let us consider the advection-reaction equation for a scalar concentration field

∂u

∂t
+ V (x) · ∇u = [κ0(x) + σκ1(x; ξ)]R(u), ξ ∈ R

m, (53)

where V (x) is a divergence-free (deterministic) advection velocity field, R(u) is a non-

linear reaction term and κ1(x; ξ) is a zero-mean random perturbation in the reaction

rate κ0(x). In Fig. 9 we plot few samples of the concentration field solving (53) in one

spatial dimension, for different realizations of the random reaction rate and the random

initial condition. In [142; 136] we have studied Eq. (53) by using the response-excitation
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Fig. 9. Stochastic advection-reaction. Samples of the concentration field solving (53) in one spatial

dimension for periodic boundary conditions and different realizations of the random initial condition

and the random reaction rate. The correlation length of the random initial condition decreases from

(a) to (e). In (f) we plot few realizations of the random reaction rate (σ = 0.3). (Adapted from [137]).
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Fig. 10. Stochastic advection-reaction. Time snapshots of the concentration PDF predicted by the

MZ-PDF equation (54). (Adapted from [137]).

PDF method as well as the large-eddy-diffusivity (LED) closure [126]. Here we consider

a different approach based on the MZ-PDF equation [137] . To this end, we assume

that σ is reasonably small and that the concentration field u is independent of ξ at

initial time, i.e., that the initial joint PDF of the system has the form p(0) = pu(0)pξ. In

these hypotheses, we obtain the following second-order approximation to the MZ-PDF

equation

∂pu(t)

∂t
= L0pu(t) + σ2

[∫ t

0

〈
κ1e

sL0κ1
〉
e−sL0ds

]
F 2pu(t), (54)

where the average 〈·〉 is relative to the joint PDF of ξ and

L0 = −κ0(x)F − V (x) · ∇, F =
∂R(a)

∂a
+R(a)

∂

∂a
. (55)

Equation (54) is linear, but it involves derivatives of infinite-order in both variables

x and a. Such derivatives come from the exponential operators esL0 within the time
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Fig. 11. Stochastic advection-reaction. Comparison between the MZ-PDF solution at x = 1 and a

non-parametric kernel density estimation [12] of the PDF based on 10000 MC solution samples. The

zero-order approximation is obtained by neglecting the second-order term in σ in Eq. (54). (Adapted

from [137]).

convolution term. Note that such convolution can be also expressed as a functional

derivative [134] of the exponential operator along κ1(x), by using an identity of Feyn-

man (see [39], Eq. (6) or [152]). In a finite-dimensional setting, these quantities can

be computed by using efficient numerical algorithms, e.g., based on scaling-squaring

methods and Padé approximants [2; 3; 89]. In Fig. 10 we plot the time snapshots of

the PDF of the concentration field as predicted by the MZ-PDF equation (54). The

comparison between such PDF and a Monte-Carlo solution is done in Fig. 11. It is seen

that in this case the second-order operator cumulant approximation provides accurate

results for a quite large degree of perturbation (see Fig. 9(f)).

Stochastic Burgers Equation

The Mori-Zwanzig formulation can be applied also to the Burgers equation

∂u

∂t
+ u

∂u

∂x
= σf(x, t;ω) (56)

to formally integrate out the random forcing term. This yield the following equation

(second-order approximation) for the one-point one-time PDF of the velocity field (see
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Fig. 12. Stochastic Burgers equation. One realization of the velocity field computed by using adaptive

discontinuous Galerkin methods (left). Time snapshots of the one-point PDF obtained by solving the

MZ-PDF equation (57). Adapted from [23])

[23])

∂pu(t)

∂t
=L0pu(t) + σ 〈f(x, t)〉 ∂pu(t)

∂a
+

σ2

[∫ t

0

〈
f(x, t)

∂

∂a
e(t−s)L0f(x, s)

〉
∂

∂a
e−(t−s)L0ds

]
pu(t), (57)

where L0 is given by

L0 = −
∫ a

−∞

da
∂

∂x
− a ∂

∂x
. (58)

In Fig. 13 we compare the PDF dynamics obtained by solving Eq. (57) with Monte

Carlo simulation. It is seen that, as we increase the amplitude σ of the forcing, the

second-order approximation (57) loses accuracy and higher-order corrections have to

be included.

Coarse-Grained Models of Particle Systems

Particle systems are often used in models of system biology and soft matter physics to

simulate and understand large-scale effects based on microscopic first principles. The

computability of such systems depends critically on the number of particles and the

interaction potentials. Full molecular dynamics (MD) simulations can be performed

for particle systems with O (1013) particles. However, such “hero” simulations require

hundred of thousands of computer cores and significant time and data processing to

be successfully completed. This motivates the use of coarse-graining techniques, such
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Fig. 13. Stochastic Burgers equation. One-point PDF of the velocity field at x = π for exponentially

correlated, homogeneous (in space) random forcing processes with correlation time 0.01 and amplitude

σ = 0.01 and σ = 0.1 (second row). Shown are results obtained from MC, and from two different

truncations of the MZ-PDF equation (57). (Adapted from [23]).

as dissipative particle dynamics (DPD) [99], for particle systems to compute macro-

scopic/mesoscopic observables at a reasonable computational cost. Among different ap-

proaches, the Mori-Zwanzig formulation [62; 119] has proved to be effective in achieving

this goal [78; 1; 59]. The key idea is shown in Fig. 14, where a star polymer described

atomistically is coarse-grained to bigger particles - the MZ-DPD particles - by following

the procedure sketched in Fig. 3 for a star polymer. The calculation of the solution

to the MZ-DPD system, e.g., Eq. (14), relies on approximations. In particular, the

memory term plays an important role in the dynamics of the coarse-grained system,

and this role becomes more relevant as we increase the coarse-graining level [158; 78].

In Fig. 14 we compare the velocity auto-correlation function obtained from molecular

dynamics simulations (MD) and the coarse-grained MZ-DPD system.

Conclusions

In this chapter we discussed how to perform the contraction of state variables in non-

equilibrium stochastic dynamical systems by using the Mori-Zwanzig projection opera-
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Fig. 14. Coarse-grained model of a particle system. Comparison between the velocity auto-correlation

function obtained from molecular dynamics simulation (MD) and Mori-Zwanzig dissipative particle-

dynamics (MZ-DPD). (Courtesy of Dr. Zhen Li, Brown University (unpublished)).

tor method and the effective propagator approaches. Both techniques yield exact equa-

tions of motion for quantities of interest in high-dimensional systems, e.g., functionals

of the solution to systems of stochastic ordinary and partial differential equations.

Examples of such functionals are the position and momentum of clusters of particles

(MZ-DPD methods), the series expansion of the solution to a SPDE, or the turbulent

viscosity in the inertial range of fully developed turbulence. One of the main advantages

in developing such exact equations is that they allow us to avoid integrating the full

(high-dimensional) stochastic dynamical system and solve directly for the quantities

of interest, thus reducing the computational cost significantly. In principle, this can

break the curse of dimensionality in numerical simulations of SODEs and SPDEs at

the price of solving complex integro-differential equations. Computing the solution to

MZ equations relies on approximations and appropriate numerical schemes. Over the

years many different techniques have been proposed for this scope, with the most effi-

cient ones being problem-dependent. We discussed classical perturbation methods such

as truncated operator cumulant expansions, as well as more recent approaches, e.g.,

based on orthogonal expansions of memory kernels, renormalized perturbation theory,
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sampling techniques, and maximum entropy principles. There is no general recipe to

effectively approximate MZ equations for systems in which the relevant and the irrel-

evant phase variables have similar dynamical properties and order of magnitude. This

situation arises very often when dealing with the problem of eliminating macroscopic

phase variables, and it should be approached on a case-by-case basis.
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